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In relation to molecular magnetism,1 it has been important to
clarify magnetic interactions between paramagnetic molecules, and
an electron paramagnetic resonance (EPR) method has been shown
to be useful for this purpose.2 However, in general, it is very difficult
to examine the magnetic properties of species exhibiting strong
antiferromagnetic interactions among spin sites. For example, a pair
of molecules in the doublet ground state does not exhibit any steady-
state EPR signals, when the antiferromagnetic interaction (2|J|) is
much larger than the Boltzmann energy (kT). If this kind of
electronic state could be observed by means of EPR, we may obtain
novel and valuable information on the magnetic properties.

We report here the first EPR study on a homobiradical with a
strong antiferromagnetic interaction (2|J| . kT). The examined
molecule is bis(tetra-tert-butyltetraazaporphinato)lutetium (III) (Lu-
(TAP)2) (Chart 1), which exhibits a useful electrochromism over
several steps.3,4 [Lu(TAP)2]+, an oxidized form of [Lu(TAP)2]0

radical initially synthesized, corresponds to a dimer of TAP-

radicals.4,5 It is known for this kind of double-decker dimers that
the two porphyrin radicals show a strong antiferromagnetic interac-
tion, resulting in an absence of a steady-state EPR signal.5 Using
a time-resolved EPR (TREPR) method, however, we have suc-
ceeded in observing a triplet EPR spectrum consisting of two TAP-

radicals, which exemplifies a novel approach for clarifying anti-
ferromagnetic interactions. Furthermore, TREPR measurements
have been carried out for [Lu(TAP)2]0 and [Lu(TAP)2]-. Electronic
structures and excited-state dynamics are compared among [Lu-
(TAP)2]+, [Lu(TAP)2]0, and [Lu(TAP)2]-, and this comparison
illustrates the utility of TREPR for examining excited-state proper-
ties in various oxidation states.

[Lu(TAP)2]0 and ZnTAP were synthesized from H2TAP (Aldrich)
following the method reported previously.3 Reduction and oxidation
of [Lu(TAP)2]0 were performed by adding tetrabutylammonium
hydroxide and bromine, respectively, and were confirmed by UV-
vis absorption spectra.3 TREPR and steady-state EPR measurements
were described previously.6 Simulation spectra were calculated
following the procedure already reported.7

Steady-state EPR spectra of [Lu(TAP)2]+, [Lu(TAP)2]0, and
[Lu(TAP)2]- are shown in Figure 1. For [Lu(TAP)2]0 consisting
of diamagnetic TAP2- and TAP- radical, an EPR signal is seen at
aroundg ) 2.002, without hyperfine splitting.3,5,8On the other hand,
[Lu(TAP)2]+ consists of a pair of TAP- radicals, but it does not
exhibit any steady-state EPR signals except that from the remaining
traces of [Lu(TAP)2]0, even at room temperature.5 This lack of EPR
signal reflects the strong antiferromagnetic interaction between the
two TAP- radicals, which originates from the large overlap between
the a1u

A and a1u
B orbitals. That is, the ground state of [Lu(TAP)2]+

exhibits diamagnetism (the singlet ground state), and two electrons

are in the bonding b1 orbital (Figure 2). In the case of [Lu(TAP)2]-,
since two diamagnetic TAP2- ligands constitute this reduced form,
no EPR signal can be observed.

TREPR spectra of [Lu(TAP)2]+, [Lu(TAP)2]0, and [Lu(TAP)2]-

are shown in Figure 1. Although no TREPR signal is seen for [Lu-
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Figure 1. Steady-state (a, b, c: solid lines) and time-resolved (d, e, f:
solid lines) EPR spectra of [Lu(TAP)2]+ (a, d), [Lu(TAP)2]0 (b, e), and
[Lu(TAP)2]- (c, f) at 20 K. TREPR spectra were measured at 0.9µs after
laser excitation. Simulation spectra (d, f: broken lines) were calculated
using the parameters described in the text.

Figure 2. Molecular orbital diagrams of [Lu(TAP)2]+ (a), [Lu(TAP)2]0

(b), and [Lu(TAP)2]- (c).
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(TAP)2]0,9,10we have succeeded in observing the TREPR spectrum
of [Lu(TAP)2]+ in the lowest excited triplet (T1) state, which is
different from those of H2TAP, ZnTAP, and [Lu(TAP)2]-.11 This
TREPR spectrum was reproduced using EPR parameters,D )
-0.480 GHz, E) 0.050 GHz, and selective intersystem crossing
(ISC) from the lowest excited singlet (S1) state to the y sublevel of
the T1 state (Px:Py:Pz ) 0:0.7:0.3).7,12 To clarify the electronic
structure of the T1 state, we have calculated theD value of the
(b1a2) configuration. Here, theD value of the (b1a2) configuration
is reasonably transformed into a magnetic dipole-dipole interaction
between the a1u

A and a1u
B orbitals under a half-point charge approxi-

mation.13 Assuming the interplanar distance is 3.2 Å,14 theD value
was evaluated as-0.456 GHz, which reproduces excellently the
experimentalD value () -0.480 GHz). The T1 state of [Lu-
(TAP)2]+ is clearly assigned to the3(a1u

Aa1u
B) configuration (or

3(b1a2)). To the best of our knowledge, this is the first EPR obser-
vation of a homobiradical with a strong antiferromagnetic interaction
(2|J| . kT). In addition, the lowest excited state of the oxidized
form of double-decker porphyrin dimers was experimentally
characterized for the first time.4,5,10,15-18

For [Lu(TAP)2]-, the T1 TREPR spectrum was reproduced using
EPR parametersD ) 0.405 GHz,E ) 0.065 GHz, andPx:Py:Pz )
0: 0.4: 0.6. TheD value of [Lu(TAP)2]- is much smaller than
that () 0.915 GHz) of the corresponding monomer, ZnTAP. Two
kinds of interactions, exciton (EX) and charge resonance (CR) inter-
actions, exist in a T1 dimer consisting of two identical units.15,16,18

When the constituting TAP planes are parallel, theD value is not
influenced by the EX interaction, and therefore, the smallD value
results from the CR character.18 The contribution of the CR
configuration was evaluated as 0.38 following the method reported
previously.12,18,19

It is noteworthy that selectivities in the S1 f T1 ISC are different
between [Lu(TAP)2]+ (Px:Py:Pz ) 0:0.7:0.3) and [Lu(TAP)2]- (Px:
Py:Pz ) 0:0.4:0.6). In analogy with Zn porphyrins,6,20 the selective
ISC of [Lu(TAP)2]- is reasonably explained by spin-orbit coupling
(SOC) between the dxz and dyz orbitals or between px and py orbitals
on the central lutetium ion, which are admixed with the e3 and e1
orbitals of TAP ligands, constituting the S1 and T1 states.15,16 In
the case of the (b1a2) configuration of [Lu(TAP)2]+, the electron
density of the b1 and a2 orbitals is absent on the pyrrole nitrogens
and lutetium.8 That is, the ISC is not influenced by the SOC of the
central lutetium ion, and therefore, the selective ISC to the y sub-
level occurs due to the SOC between theπ andσ orbitals, which
are admixed with the b1 and a2 orbitals via vibronic coupling.6,20 It
is thus clearly shown that the influences of the central metal ion
are dependent on the oxidation states of the TAP ligand.

In summary, we have described a TREPR study on three oxi-
dation states of Lu(TAP)2, where the lowest excited states of the
oxidized and reduced forms are quantitatively characterized. In
particular, the T1 [Lu(TAP)2]+ corresponds to the first EPR obser-
vation of a homobiradical with a strong antiferromagnetic interac-
tion. This kind of TREPR application will provide the novel infor-
mation on antiferromagnetic interactions between paramagnetic spe-
cies. In addition, since there have been only a few studies on the
combined use of the TREPR and electrochemistry,21 these T1
TREPR spectra of two different oxidation states are the first and
valuable example, exemplifying the utility of TREPR for investigat-
ing compounds in various oxidation states, similarly to steady-state
EPR.
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